指示計器(過去問にチャレンジ)

電力計について、次の(a)及び(b)の問いに答えよ。

(a)次の文章は、電力計の原理に関する記述である。
図1に示す電力計は、固定コイルF1,F2に流れる負荷電流I˙[A]による磁界の強さと、可動コイルMに流れる電流I˙M[A]の積に比例したトルクが可動コイルに生じる。したがって、指針の振れ角θは(ア)に比例する。
このような形の計器は、一般に(イ)計器といわれ、(ウ)の測定に使用される。
負荷Z˙[Ω]が誘導性の場合、電圧V˙[V]のベクトルを基準に負荷電流I˙[A]のベクトルを描くと、図2に示すベクトル①、②、③のうち(エ)のように表される。ただし、φ[rad]は位相角である。
上記の記述中の空白箇所(ア)、(イ)、(ウ)及び(エ)に当てはまる組合せとして、正しいものを次の(1)~(5)のうちから一つ選べ。

 
(1)負荷電力電流力計形交流
(2)電力量可動コイル形直流
(3)負荷電力誘導形交流直流両方
(4)電力量可動コイル形交流直流両方
(5)負荷電力電流力計形交流直流両方

(b)次の文章は、図1で示した単相電力計を2個使用し、三相電力を測定する2電力計法の理論に関する記述である。
図3のように、誘導性負荷Z˙を3個接続した平衡三相負荷回路に対称三相交流電源が接続されている。ここで、線間電圧をVab˙[V],Vbc˙[V],Vca˙[V]、負荷の相電圧をVa˙[V],Vb˙[V],Vc˙[V]、線電流をIa˙[A],Ib˙[A],Ic˙[A]で示す。
この回路で、図のように単相電力計W1とW2を接続すれば、平衡三相負荷の電力が、2個の単相電力計の指示の和として求めることができる。
単相電力計W1の電圧コイルに加わる電圧Vac˙は図4のベクトル図からVac˙=Va˙Vc˙となる。また、単相電力計W2の電圧コイルに加わる電圧Vbc˙Vbc˙=(オ)となる。
それぞれの電流コイルに流れる電流Ia˙,Ib˙と電圧の関係は図4のようになる。図4におけるφ[rad]は相電圧と線電流の位相角である。
線間電圧の大きさをVab= Vbc= Vca= V[V]、線電流の大きさをIa= Ib= Ic= I[A]とおくと、単相電力計W1及びW2の指示をそれぞれP1[W],P2[W]とすれば、
P1= Vca Iacos(カ)[W]
P2= Vbc Ibcos(キ)[W]
したがって、P1とP2の和P[W]は、
P= P1+P2=VI(ク)cosφ=3VIcosφ[W]
となるので、2個の単相電力計の指示の和は三相電力に等しくなる。
上記の記述中の空白箇所(オ)、(カ)、(キ)及び(ク)に当てはまる組合せとして、正しいものを次の(1)~(5)のうちから一つ選べ。

 
(1)Vb˙Vc˙π6φπ6+φ2cosπ6
(2)Vc˙Vb˙φπ6π6+φ2sinπ6
(3)Vb˙Vc˙π6φπ6+φ2cosπ3
(4)Vb˙Vc˙π3φπ3+φ2cosπ6
(5)Vc˙Vb˙π3φπ3+φ2sinπ3

正解を表示